615 research outputs found

    Analytical determination of orbital elements using Fourier analysis. I. The radial velocity case

    Full text link
    We describe an analytical method for computing the orbital parameters of a planet from the periodogram of a radial velocity signal. The method is very efficient and provides a good approximation of the orbital parameters. The accuracy is mainly limited by the accuracy of the computation of the Fourier decomposition of the signal which is sensitive to sampling and noise. Our method is complementary with more accurate (and more expensive in computer time) numerical algorithms (e.g. Levenberg-Marquardt, Markov chain Monte Carlo, genetic algorithms). Indeed, the analytical approximation can be used as an initial condition to accelerate the convergence of these numerical methods. Our method can be applied iteratively to search for multiple planets in the same system.Comment: accepted to A&

    First radius measurements of very low mass stars with the VLTI

    Get PDF
    e present 4 very low mass stars radii measured with the VLTI using the 2.2 microns VINCI test instrument. The observations were carried out during the commissioning of the 104-meter-baseline with two 8-meter-telescopes. We measure angular diameters of 0.7-1.5 mas with accuracies of 0.04-0.11 mas, and for spectral type ranging from M0V to M5.5V. We determine an empirical mass-radius relation for M dwarfs based on all available radius measurements. The observed relation agrees well with theoretical models at the present accuracy level, with possible discrepancy around 0.5-0.8 Msolar that needs to be confirmed. In the near future, dozens of M dwarfs radii will be measured with 0.1-1% accuracy, with the VLTI, thanks to the improvements expected from the near infrared instrument AMBER. This will bring strong observational constraints on both atmosphere and interior physics.Comment: Accepted for publication in Astronomy and Astrophysics Letters, 4 pages, 3 figure

    Astrometric detection of exoplanets from the ground

    Full text link
    Astrometry is a powerful technique to study the populations of extrasolar planets around nearby stars. It gives access to a unique parameter space and is therefore required for obtaining a comprehensive picture of the properties, abundances, and architectures of exoplanetary systems. In this review, we discuss the scientific potential, present the available techniques and instruments, and highlight a few results of astrometric planet searches, with an emphasis on observations from the ground. In particular, we discuss astrometric observations with the Very Large Telescope (VLT) Interferometer and a programme employing optical imaging with a VLT camera, both aimed at the astrometric detection of exoplanets. Finally, we set these efforts into the context of Gaia, ESA's astrometry mission scheduled for launch in 2013, and present an outlook on the future of astrometric exoplanet detection from the ground.Comment: 9 pages, 3 figures. Invited contribution to the SPIE conference "Techniques and Instrumentation for Detection of Exoplanets VI" held in San Diego, CA, August 25-29, 201

    Analytical determination of orbital elements using Fourier analysis. II. Gaia astrometry and its combination with radial velocities

    Full text link
    The ESA global astrometry space mission Gaia has been monitoring the position of a billion stars since 2014. The analysis of such a massive dataset is challenging in terms of the data processing involved. In particular, the blind detection and characterization of single or multiple companions to stars (planets, brown dwarfs, or stars) using Gaia astrometry requires highly efficient algorithms. In this article, we present a set of analytical methods to detect and characterize companions in scanning space astrometric time series as well as via a combination of astrometric and radial velocity time series. We propose a general linear periodogram framework and we derive analytical formulas for the false alarm probability (FAP) of periodogram peaks. Once a significant peak has been identified, we provide analytical estimates of all the orbital elements of the companion based on the Fourier decomposition of the signal. The periodogram, FAP, and orbital elements estimates can be computed for the astrometric and radial velocity time series separately or in tandem. These methods are complementary with more accurate and more computationally intensive numerical algorithms (e.g., least-squares minimization, Markov chain Monte Carlo, genetic algorithms). In particular, our analytical approximations can be used as an initial condition to accelerate the convergence of numerical algorithms. Our formalism has been partially implemented in the Gaia exoplanet pipeline for the third Gaia data release. Since the Gaia astrometric time series are not yet publicly available, we illustrate our methods on the basis of Hipparcos data, together with on-ground CORALIE radial velocities, for three targets known to host a companion: HD 223636 (HIP 117622), HD 17289 (HIP 12726), and HD 3277 (HIP 2790).Comment: Accepted in A&

    DE0823-49 is a juvenile binary brown dwarf at 20.7 pc

    Full text link
    Astrometric monitoring of the nearby early-L dwarf DE0823-49 has revealed a low-mass companion in a 248-day orbit that was announced in an earlier work. Here, we present new astrometric and spectroscopic observations that allow us to characterise the system in detail. The optical spectrum shows LiI-absorption indicative of a young age and/or substellar mass for the primary component. The near-infrared spectrum is best reproduced by a binary system of brown dwarfs with spectral types of L1.5 ++ L5.5 and effective temperatures of 2150±1002150\pm100 K and 1670±1401670\pm140 K. To conform with the photocentric orbit size measured with astrometry and the current understanding of substellar evolution, the system must have an age in the 80--500 Myr range. Evolutionary models predict component masses in the ranges of M10.0280.063MM_1\simeq0.028-0.063\,M_\odot and M20.0180.045MM_2\simeq0.018-0.045\,M_\odot with a mass ratio of q0.640.74q\simeq0.64-0.74. Multi-epoch radial velocity measurements unambiguously establish the three-dimensional orbit of the system and allow us to investigate its kinematic properties. DE0823-49 emerges as a rare example of a nearby brown dwarf binary with orbit, component properties, and age that are characterised well. It is a juvenile resident of the solar neighbourhood, but does not appear to belong to a known young association or moving group.Comment: 9 pages, 11 figures. Accepted for publication in A&

    The HARPS search for southern extrasolar planets XXV. Results from the metal-poor sample

    Full text link
    Searching for extrasolar planets around stars of different metallicity may provide strong constraints to the models of planet formation and evolution. In this paper we present the overall results of a HARPS (a high-precision spectrograph mostly dedicated to deriving precise radial velocities) program to search for planets orbiting a sample of 104 metal-poor stars (selected [Fe/H] below -0.5). Radial velocity time series of each star are presented and searched for signals using several statistical diagnostics. Stars with detected signals are presented, including 3 attributed to the presence of previously announced giant planets orbiting the stars HD171028, HD181720, and HD190984. Several binary stars and at least one case of a coherent signal caused by activity-related phenomena are presented. One very promising new, possible giant planet orbiting the star HD107094 is discussed, and the results are analyzed in light of the metallicity-giant planet correlation. We conclude that the frequency of giant planets orbiting metal-poor stars may be higher than previously thought, probably reflecting the higher precision of the HARPS survey. In the metallicity domain of our sample, we also find evidence that the frequency of planets is a steeply rising function of the stellar metal content, as found for higher metallicity stars.Comment: Accepted for publication in A&

    Planets and Stellar Activity: Hide and Seek in the CoRoT-7 system

    Get PDF
    Since the discovery of the transiting super-Earth CoRoT-7b, several investigations have yielded different results for the number and masses of planets present in the system, mainly owing to the star's high level of activity. We re-observed CoRoT-7 in January 2012 with both HARPS and CoRoT, so that we now have the benefit of simultaneous radial-velocity and photometric data. This allows us to use the off-transit variations in the star's light curve to estimate the radial-velocity variations induced by the suppression of convective blueshift and the flux blocked by starspots. To account for activity-related effects in the radial-velocities which do not have a photometric signature, we also include an additional activity term in the radial-velocity model, which we treat as a Gaussian process with the same covariance properties (and hence the same frequency structure) as the light curve. Our model was incorporated into a Monte Carlo Markov Chain in order to make a precise determination of the orbits of CoRoT-7b and CoRoT-7c. We measure the masses of planets b and c to be 4.73 +/- 0.95 Mearth and 13.56 +/- 1.08 Mearth, respectively. The density of CoRoT-7b is (6.61 +/- 1.72)(Rp/1.58 Rearth)^(-3) g.cm^(-3), which is compatible with a rocky composition. We search for evidence of an additional planet d, identified by previous authors with a period close to 9 days. We are not able to confirm the existence of a planet with this orbital period, which is close to the second harmonic of the stellar rotation at around 7.9 days. Using Bayesian model selection we find that a model with two planets plus activity-induced variations is most favoured.Comment: Accepted 2014 July 2. Received 2014 June 30; in original form 2013 May 30 (17 pages, 9 figures
    corecore